प्रतियोगी परीक्षाओं के लिए संभावना में पासा की समस्याएं

Vikram Singh4 years ago 20.1K Views Join Examsbookapp store google play
dice problems in probability

समाधान के साथ संभावना में पासा समस्याएं


Q.13. राशि के रूप में एक समान संख्या प्राप्त करना

(A) 1/8

(B) 1/2

(C) 1/9

(D) 1/10



Ans .  B



 दो अलग-अलग पासे एक साथ फेंके जाते हैं, उनके चेहरे पर नंबर 1, 2, 3, 4, 5 और 6 होते हैं। हम जानते हैं कि दो अलग-अलग पासा के एकल थ्रो में, संभावित परिणामों की कुल संख्या (6 × 6) है) = 36
राशि के रूप में एक समान संख्या प्राप्त करना:
आइए E10 = योग के रूप में सम संख्या प्राप्त करने की घटना। योग के रूप में सम संख्या की घटनाएँ E10  होंगी = [(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (2, 6), (3, 3), (3, 1), (3, 5), (4, 4), (4, 2), (4, 6), (5, 1), (5, 3), (5, 5), (6, 2), (6, 4), (6, 6)] = 18
इसलिए, योग के रूप में एक समान संख्या प्राप्त करने की संभावना
$$P(E) ={Number \ of \ favorable \ outcomes\over Total \ number \ of \ possible \ outcome }$$
= 18/36
= 1/2
 


Q.14. एक युगल हो रहा है

(A) 2/3

(B) 4/8

(C) 1/6

(D) 4/8



Ans .  C



  दो अलग-अलग पासे एक साथ फेंके जाते हैं, उनके चेहरे पर नंबर 1, 2, 3, 4, 5 और 6 होते हैं। हम जानते हैं कि दो अलग-अलग पासा के एकल थ्रो में, संभावित परिणामों की कुल संख्या (6 × 6) है = 36
एक युगल हो रहा है:
आइए  E4 = एक युगल होने की घटना। जो संख्या दोगुनी होगी वह E4 होगी = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)] = 6
इसलिए, 'एक दोहरी' होने की संभावना
$$P(E) ={Number \ of \ favorable \ outcomes\over Total \ number \ of \ possible \ outcome }$$
= 6/36
= 1/6


Q.15. योग के रूप में अभाज्य संख्या प्राप्त करना

(A) 2/12

(B) 3/12

(C) 5/12

(D) 12/5



Ans .  C



 दो अलग-अलग पासे एक साथ फेंके जाते हैं, उनके चेहरे पर नंबर 1, 2, 3, 4, 5 और 6 होते हैं। हम जानते हैं कि दो अलग-अलग पासा के एकल थ्रो में, संभावित परिणामों की कुल संख्या (6 × 6) है = 36
योग के रूप में एक प्रमुख संख्या प्राप्त करना:
आइए  E11 = योग के रूप में अभाज्य संख्या प्राप्त करने की घटना। योग के रूप में एक अभाज्य संख्या की घटनाएँ E11  होंगी = [(1, 1), (1, 2), (1, 4), (1, 6), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (4, 1), (4, 3), (5, 2), (5, 6), (6, 1), (6, 5)] = 15
इसलिए, 'राशि के रूप में एक प्रमुख संख्या' होने की संभावना
$$P(E) ={Number \ of \ favorable \ outcomes\over Total \ number \ of \ possible \ outcome }$$
= 15/36
= 5/12


Q.16. 8 का योग हो रहा है

(A) 6/36

(B) 8/56

(C) 7/40

(D) 5/36



Ans .  D



 दो अलग-अलग पासे एक साथ फेंके जाते हैं, उनके चेहरे पर नंबर 1, 2, 3, 4, 5 और 6 होते हैं। हम जानते हैं कि दो अलग-अलग पासा के एकल थ्रो में, संभावित परिणामों की कुल संख्या (6 × 6) है = 36
8 की राशि प्राप्त करना:
आइए E5 = 8 की राशि पाने की घटना। 8 की संख्या जो E5 होगी = [(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)] = 5
इसलिए, '8 की राशि' प्राप्त करने की संभावना
$$P(E) ={Number \ of \ favorable \ outcomes\over Total \ number \ of \ possible \ outcome }$$
= 5/36


Q.17. सम संख्याओं का दोहराव प्राप्त करना

(A) 1/18

(B) 1/16

(C) 1/10

(D) 1/12



Ans .  D



 दो अलग-अलग पासे एक साथ फेंके जाते हैं, उनके चेहरे पर नंबर 1, 2, 3, 4, 5 और 6 होते हैं। हम जानते हैं कि दो अलग-अलग पासा के एकल थ्रो में, संभावित परिणामों की कुल संख्या (6 × 6) है = 36
योग के रूप में एक प्रमुख संख्या प्राप्त करना:
आइए E11 = योग के रूप में अभाज्य संख्या प्राप्त करने की घटना। योग के रूप में एक अभाज्य संख्या की घटनाएँ E11 होंगी = [(1, 1), (1, 2), (1, 4), (1, 6), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (4, 1), (4, 3), (5, 2), (5, 6), (6, 1), (6, 5)] = 15
इसलिए, 'राशि के रूप में एक प्रमुख संख्या' होने की संभावना
$$P(E) ={Number \ of \ favorable \ outcomes\over Total \ number \ of \ possible \ outcome }$$
= 15/36
= 5/12
 


Q.18. 5 से विभाज्य हो रही है

(A) 8/36

(B) 6/36

(C) 5/36

(D) 7/36



Ans .  D


 दो अलग-अलग पासे एक साथ फेंके जाते हैं, उनके चेहरे पर नंबर 1, 2, 3, 4, 5 और 6 होते हैं। हम जानते हैं कि दो अलग-अलग पासा के एकल थ्रो में, संभावित परिणामों की कुल संख्या (6 × 6) है = 36
5 से विभाज्य हो रही है:
आइए E6 = 5 से विभाज्य होने की घटना। वह संख्या जिसका योग 5 से विभाज्य है E6 होगा = [(1, 4), (2, 3), (3, 2), (4, 1), (4, 6), (5, 5), (6, 4)] = 7
इसलिए, '5 से विभाज्य' होने की संभावना
$$P(E) ={Number \ of \ favorable \ outcomes\over Total \ number \ of \ possible \ outcome }$$
= 7/36


Q.19. एक मरने पर 2 के कई और दूसरे मरने पर 3 के कई हो रहे हैं

(A) 11/36

(B) 12/36

(C) 10/54

(D) 12/54



Ans .  A



 दो अलग-अलग पासे एक साथ फेंके जाते हैं, उनके चेहरे पर नंबर 1, 2, 3, 4, 5 और 6 होते हैं। हम जानते हैं कि दो अलग-अलग पासा के एकल थ्रो में, संभावित परिणामों की कुल संख्या (6 × 6) है = 36
एक मरने पर 2 के कई और दूसरे मरने पर 3 के कई हो रहे हैं:
आइए E13 = एक मरने पर 2 की एक बहु पाने और दूसरी मरने पर 3 की बहु पाने की घटना। एक मरने पर 2 की एक से अधिक और दूसरी मरने पर 3 की एक की घटना E13 होगी = [(2, 3), (2, 6), (3, 2), (3, 4), (3, 6), (4, 3), (4, 6), (6, 2), (6, 3), (6, 4), (6, 6)] = 11
इसलिए, 'एक मरने पर 2 का गुणनफल और दूसरे मरने पर 3 का गुणक प्राप्त करने की संभावना'
$$P(E) ={Number \ of \ favorable \ outcomes\over Total \ number \ of \ possible \ outcome }$$
 = 11/36

बेझिझक और मुझे कमेंट बॉक्स से संबंधित पासा समस्याओं में संभावना में पूछें यदि आपको कोई समस्या आती है।

Showing page 3 of 3

    Choose from these tabs.

    You may also like

    About author

    Vikram Singh

    Providing knowledgable questions of Reasoning and Aptitude for the competitive exams.

    Read more articles

      Report Error: प्रतियोगी परीक्षाओं के लिए संभावना में पासा की समस्याएं

    Please Enter Message
    Error Reported Successfully