Quantitative Aptitude Practice Question and Answer
8Q: सिमरन ने 50,000 रूपये का निवेश कर एक सॉफ्टवेयर का व्यवसाय शुरू किया। 6 महीने बाद नंदा ने 80,000 रूपये की पूंजी लगाकर साझेदार हो गयी। यदि 3 साल बाद उन्होंने 24,500 रूपये का लाभ कमाया तो सिमरन का लाभ में हिस्सा क्या होगा? 3164 05b5cc731e4d2b4197774f7f1
5b5cc731e4d2b4197774f7f1- 112,421false
- 29,423false
- 311,600false
- 410,500true
- Show AnswerHide Answer
- Workspace
- SingleChoice
Answer : 4. "10,500"
Explanation :
Answer: D) 10,500 Explanation: The ratio of their investments:50000x36 : 80000x30 = 3 : 4Simran's share of profit = (24500x3/7) = Rs.10,500.
Q: एक स्कूल में लड़कों और लड़कियों का अनुपात क्रमशः 4ः6 है। यदि लड़कों की संख्या में 200 की वृद्धि की जाती हैं तो यह अनुपात 5ः6 हो जाता है। स्कूल में लड़कियों की संख्या कितनी है? 2169 05d1b06bf1fc62311c773685b
5d1b06bf1fc62311c773685b- 11200true
- 2800false
- 31000false
- 4500false
- Show AnswerHide Answer
- Workspace
- SingleChoice
Answer : 1. "1200"
Q: A की क्षमता B से तीन गुणी है दोनों मिलकर एक काम 15 दिन में कर सकते हैं तो अकेला B उसी काम को कितने दिन में करेगा? 2633 05d1488909aeb0a08f1e67455
5d1488909aeb0a08f1e67455- 140false
- 260true
- 330false
- 420false
- Show AnswerHide Answer
- Workspace
- SingleChoice
Answer : 2. "60"
Q: From a tank of petrol, which contains 200 litres of petrol, the seller replaces each time with kerosene when he sells 40 litres of petrol(or its mixture). Everytime he sells out only 40 litres of petrol(pure or impure). After replacing the petrol with kerosen 4th time, the total amount of kerosene in the mixture is 27588 25b5cc7d7e4d2b4197775151a
5b5cc7d7e4d2b4197775151a- 181.92Lfalse
- 296Lfalse
- 3118.08Ltrue
- 4None of thesefalse
- Show AnswerHide Answer
- Workspace
- SingleChoice
Answer : 3. "118.08L"
Explanation :
Answer: C) 118.08L Explanation: The amount of petrol left after 4 operations = 200 × 1-402004 = 200 × 454 = 200 × 256625 = 81.92 litres Hence the amount of kerosene = 200 - 81.92 = 118. 08 litres
Q: From a container of wine, a thief has stolen 15 litres of wine and replaced it with same quantity of water. He again repeated the same process. Thus, in three attempts the ratio of wine and water became 343 : 169. The initial amount of wine in the container was: 13565 15b5cc7d7e4d2b41977751510
5b5cc7d7e4d2b41977751510- 175 litresfalse
- 2100 litresfalse
- 3150 litresfalse
- 4120 litrestrue
- Show AnswerHide Answer
- Workspace
- SingleChoice
Answer : 4. "120 litres"
Explanation :
Answer: D) 120 litres Explanation: wine(left)wine(added) = 343169 It means wine(left)wine(initial amount) = 343512 (since 343 + 169 = 512) Thus, 343x = 512x1 - 15k3 343512 = 783 = 1 - 15k3 1-15k=78=1-18 Thus the initial amount of wine was 120 liters.
Q: 5 men and 4 women are to be seated in a row so that the women occupy the even places . How many such arrangements are possible? 1703 15b5cc7d1e4d2b4197775129f
5b5cc7d1e4d2b4197775129f- 12880true
- 21440false
- 3720false
- 42020false
- Show AnswerHide Answer
- Workspace
- SingleChoice
Answer : 1. "2880"
Explanation :
Answer: A) 2880 Explanation: There are total 9 places out of which 4 are even and rest 5 places are odd. 4 women can be arranged at 4 even places in 4! ways. and 5 men can be placed in remaining 5 places in 5! ways. Hence, the required number of permutations = 4! x 5! = 24 x 120 = 2880
Q: How many 7 digit numbers can be formed using the digits 1, 2, 0, 2, 4, 2, 4? 2743 05b5cc7d1e4d2b41977751295
5b5cc7d1e4d2b41977751295- 1120false
- 2360true
- 3240false
- 4424false
- Show AnswerHide Answer
- Workspace
- SingleChoice
Answer : 2. "360"
Explanation :
Answer: B) 360 Explanation: There are 7 digits 1, 2, 0, 2, 4, 2, 4 in which 2 occurs 3 times, 4 occurs 2 times. Number of 7 digit numbers = 7!3!×2! = 420 But out of these 420 numbers, there are some numbers which begin with '0' and they are not 7-digit numbers. The number of such numbers beginning with '0'. =6!3!×2! = 60 Hence the required number of 7 digits numbers = 420 - 60 = 360
Q: In a G - 20 meeting there were total 20 people representing their own country. All the representative sat around a circular table. Find the number of ways in which we can arrange them around a circular table so that there is exactly one person between two representatives namely Manmohan and Musharraf. 2959 05b5cc7d1e4d2b4197775128b
5b5cc7d1e4d2b4197775128b- 12 x (17!)false
- 22 x (18!)true
- 3(3!) x (18!)false
- 4(17!)false
- Show AnswerHide Answer
- Workspace
- SingleChoice
Answer : 2. "2 x (18!)"
Explanation :
Answer: B) 2 x (18!) Explanation: A person can be chosen out of 18 people in 18 ways to be seated between Musharraf and Manmohan. Now consider Musharraf, Manmohan, and the third person, sitting between them, as a single personality, we can arrange them in 17! ways but Musharraf and Manmohan can also be arranged in 2 ways. Required number of permutations = 18 x (17!) x 2 = 2 x 18!