Maths प्रश्न और उत्तर का अभ्यास करें
8 प्र: एक प्राथमिक विद्यालय में 96 छात्र पढ़ रहे हैं। उनका औसत वजन 30 किग्रा है। यदि कोई छात्र दूसरे विद्यालय में स्थानांतरित किया जाता है, तो औसत वजन 200 ग्राम बढ़ जाता है। उस छात्र का वजन ज्ञात कीजिये जो विद्यालय से स्थानांतरित होता है।
804 064f84c38a11c7cb9404eafa8
64f84c38a11c7cb9404eafa8- 110 किग्रा.false
- 211 किग्रा.true
- 313 किग्रा.false
- 415 किग्रा.false
- 59 किग्रा.false
- उत्तर देखें
- Workspace
- SingleChoice
उत्तर : 2. " 11 किग्रा."
प्र: A, B से 25% अधिक तेजी से यात्रा करता है। उन्होंने एक बिंदु P से दूसरे बिंदु Q तक अपनी यात्रा शुरू की और बिंदु Q पर एक ही समय पर पहुंचे। P और Q के बीच की दूरी 85 किमी है। तथापि, मार्ग में, A को पेट्रोल के लिए रुकते समय लगभग 20 मिनट का समय गंवाना पड़ा। B की गति क्या थी?
600 064f848b81778d5be471fb11f
64f848b81778d5be471fb11f- 151 किमी/घंटाtrue
- 250 किमी/घंटाfalse
- 345 किमी/घंटाfalse
- 475 किमी/घंटाfalse
- 5इनमें से कोई नहींfalse
- उत्तर देखें
- Workspace
- SingleChoice
उत्तर : 1. "51 किमी/घंटा"
प्र: दूधवाले के पात्र में दूध और पानी के मिश्रण का अनुपात 7 : 3 है। 1 : 1 के अनुपात में दूध और पानी को प्राप्त करने के लिए मिश्रण के कितने हिस्सों को निकाल कर पानी से बदलना होगा?
622 064f84517be8effb95d655c90
64f84517be8effb95d655c90- 12/3false
- 22/7true
- 32/5false
- 41/7false
- 5उपरोक्त में से कोई नहींfalse
- उत्तर देखें
- Workspace
- SingleChoice
उत्तर : 2. "2/7"
प्र: P, Q और R एक व्यवसाय में लाभ को 1/4, 1/6 और 7/12 के अनुपात में साझा करते हैं। किसी कारण से, R सेवानिवृत्त हो जाता है। P और Q के लिए नये लाभ के हिस्से का अनुपात क्या होगा, यदि वे लाभ के नए हिस्से में अपने पुराने अनुपात को बनाए रखते हैं?
823 064f8435fa910aab8f9ffc45c
64f8435fa910aab8f9ffc45c- 12:3false
- 23:2true
- 35:3false
- 41:2false
- 52:5false
- उत्तर देखें
- Workspace
- SingleChoice
उत्तर : 2. "3:2"
प्र: स्थिर जल में नाव की गति 9 किमी/घंटा है। धारा की गति प्रारंभ में 2 किमी/घंटा है लेकिन यह प्रत्येक घंटे के बाद 3 किमी/घंटा बढ़ जाती है। कितने समय के बाद नाव वापस उसी स्थान पर आ जाएगी जहां से वह चलना शुरू हुई थी। (घंटे में)
824 064f841fe1778d5be471f9616
64f841fe1778d5be471f9616- 15(5/8)true
- 24(7/8)false
- 35(3/8)false
- 44(3/4)false
- 5इनमें से कोई नहींfalse
- उत्तर देखें
- Workspace
- SingleChoice
उत्तर : 1. "5(5/8)"
प्र: अखिल को 150 किमी की दूरी तय करने में 30 मिनट अतिरिक्त लगते हैं यदि वह अपनी सामान्य गति से 10 किमी/घंटा धीमी गति से ड्राइव करता है। यदि वह अपनी सामान्य गति से 15 किमी प्रति घंटा धीमी गति से गाड़ी चलाता है तो उसे 90 किमी की दूरी तय करने में कितना समय लगेगा?
1321 06489bddaa33e0f47b78d0eec
6489bddaa33e0f47b78d0eec- 12 घंटे 45 मीfalse
- 22 घंटे 30 मीfalse
- 32 घंटेtrue
- 42 घंटे 15 मीfalse
- उत्तर देखें
- Workspace
- SingleChoice
उत्तर : 3. "2 घंटे"
व्याख्या :
पहले हमें अखिल की सामान्य गति को पता करने की आवश्यकता है:
हम जानते हैं कि अखिल को अपनी सामान्य गति से 150 किमी की दूरी को तय करने में 30 मिनट (0.5 घंटे) अधिक लगते हैं, जब वह अपनी सामान्य गति से 10 किमी/घंटा से धीमी गति से चलाता है।
"S" को अखिल की सामान्य गति के रूप में दर्शाते हैं। इसलिए, उसकी धीमी गति (S - 10) किमी/घंटा होगी।
दूरी को तय करने के लिए समय, दुरी को गति से विभाजित करने से प्राप्त होता है: समय = दूरी / गति
उसकी सामान्य गति पर, उसको लगता है: समय सामान्य गति पर = 150 किमी / S घंटे
उसकी धीमी गति पर, उसको लगता है: समय धीमी गति पर = 150 किमी / (S - 10) घंटे
इन दो परिस्थितियों के बीच समय का अंतर 0.5 घंटे (30 मिनट) होता है: समय धीमी गति पर - समय सामान्य गति पर = 0.5 घंटे
अब, हम इस मसले को हल करने के लिए समीकरण बना सकते हैं और S के लिए हल कर सकते हैं:
(150 किमी / (S - 10)) - (150 किमी / S) = 0.5
इस समीकरण को हल करने के लिए, हम पहले एक सामान्य मामाये को प्राप्त करते हैं: (150S - 150(S - 10)) / (S(S - 10)) = 0.5
अब, सरलीकरण करें और S के लिए हल करें: (150S - 150S + 1500) / (S(S - 10)) = 0.5
(1500) / (S(S - 10)) = 0.5
अब, पार करने के लिए दोनों पक्षों को 4 से विभाजित करें: 4(S(S - 10)) = 1500
S(S - 10) = 1500 / 4 S(S - 10) = 375
अब, हम S के लिए इस समीकरण को हल कर सकते हैं:
S^2 - 10S - 375 = 0
अब, हम S के लिए इस द्विघातक समीकरण को हल कर सकते हैं:
S = [-(-10) ± √((-10)^2 - 4(1)(-375))] / (2(1))
S = [10 ± √(100 + 1500)] / 2
S = [10 ± √1600] / 2
S = [10 ± 40] / 2
अब, हमारे पास S के लिए दो संभावित मूल हैं, लेकिन हम गति को नकारात्मक नहीं ले सकते हैं क्योंकि गति नकारात्मक नहीं हो सकती है:
S = (10 + 40) / 2 = 50 / 2 = 25 किमी/घंटा
इसलिए, अखिल की सामान्य गति 25 किमी/घंटा है।
अब, हम जानना चाहते हैं कि वह 15 किमी/घंटा की गति से चलाने पर 90 किमी को तय करने में कितना समय लगेगा, जो कि उसकी सामान्य गति से 15 किमी/घंटा कम होगी, जो कि (25 - 15) = 10 किमी/घंटा होगी।
समय = दूरी / गति समय = 90 किमी / 10 किमी/घंटा = 9 घंटे
अखिल को 15 किमी/घंटा की गति से चलाते हुए 90 किमी को तय करने में 9 घंटे लगेंगे।
प्र: A और B एक साथ मिलकर एक काम 18 दिनों में कर सकते हैं। A, B से तीन गुना अधिक कुशल है B अकेले कितने दिनों में कार्य पूरा कर सकता है?
619 064ccdf41a919c8488e301a5c
64ccdf41a919c8488e301a5c- 160 दिनfalse
- 272 दिनtrue
- 354 दिनfalse
- 464 दिनfalse
- उत्तर देखें
- Workspace
- SingleChoice
उत्तर : 2. "72 दिन"
व्याख्या :
आइए हम इस समस्या को हल करें:
हम जानते हैं कि A और B मिलकर काम को 18 दिनों में पूरा कर सकते हैं, इसका मतलब है कि उनका संयुक्त काम दर एक दिन में है:
(A + B) = 1/18
यहां हमें यह जानना है कि B अकेले कितने दिनों में काम पूरा कर सकता है, जिसे हम "x" दिनों के रूप में प्रकट करेंगे।
अब, हम जानते हैं कि A तीन गुणा अधिक कुशल है, इसका मतलब है कि:
A = 3B
अब, हम A की जगह पर 3B को प्रतिस्थापित कर सकते हैं:
(3B + B) = 1/18
जैसे ही हम जमा किये हैं:
4B = 1/18
अब, हम B को इसोलेट करने के लिए दोनों पक्षों को 4 से विभाजित कर सकते हैं:
B = (1/18) / 4
B = 1/72
इसलिए, B की काम करने की दर दिन में 1/72 है। बताने के लिए कि B अकेले कितने दिनों में काम पूरा कर सकता है, B की काम करने की दर का पूर्वप्रतिष्ठा लेते हैं:
x (B के द्वारा पूरे काम को पूरा करने के लिए दिनों की संख्या) = 1 / (1/72)
x = 72
इसलिए, B केवल 72 दिनों में काम को पूरा कर सकता है।
प्र: A अकेले किसी काम को 15 दिनों में कर सकता है, जबकि B अकेले उस काम को 20 दिनों में कर सकता है। वे 6 दिनों तक एक साथ काम करते हैं और शेष कार्य C द्वारा 6 दिनों में पूरा किया जाता है। यदि उन्हें पूरे काम के लिए 800 रुपये मिलते हैं, तो उन्हें पैसे कैसे बाँटने चाहिए?
778 064f1e9943be218b6cde52171
64f1e9943be218b6cde52171- 1Rs. 320, Rs. 240 और Rs. 240true
- 2Rs. 640, Rs. 280 and और . 260false
- 3Rs. 320, Rs. 420 और Rs. 360false
- 4Rs. 360, Rs. 420 और Rs. 240false
- 5Rs. 320, Rs. 240 और Rs. 720false
- उत्तर देखें
- Workspace
- SingleChoice
उत्तर : 1. "Rs. 320, Rs. 240 और Rs. 240"
व्याख्या :
लिए इस समस्या को कदम-कदम पर समझते हैं:
- A एकल में काम को 15 दिनों में पूरा कर सकता है, इसलिए उसकी दैनिक काम की दर है 1/15 काम प्रतिदिन।
- B एकल में काम को 20 दिनों में पूरा कर सकता है, इसलिए उसकी दैनिक काम की दर है 1/20 काम प्रतिदिन।
- A और B मिलकर 6 दिनों के लिए काम करते हैं। इन 6 दिनों में, उनकी संयुक्त काम की दर है (1/15 + 1/20) = (4/60 + 3/60) = 7/60 काम प्रतिदिन।
- 6 दिनों में, उन्होंने (6 * 7/60) = 42/60 काम पूरा किया, जो कि 7/10 काम के बराबर है।
अब, आइए समझते हैं कि C ने बचा हुआ 3/10 काम को 6 दिनों में कैसे पूरा किया। हम C की दैनिक काम की दर को निर्धारित करते हैं:
C की दैनिक काम की दर = 6 दिनों में C द्वारा किया गया काम / 6 C की दैनिक काम की दर = (3/10) / 6 C की दैनिक काम की दर = 1/20 काम प्रतिदिन।
अब, हर कामकर्ता की कुल कमाई की गई कमाई की गणना करते हैं:
A का हिस्सा: A ने 6 दिनों के लिए 1/15 काम प्रतिदिन की दर पर काम किया है, इसलिए उसने (6 * 1/15) = 2/5 काम किया है। A का हिस्सा कुल मिलकर (2/5) * 800 रुपये = 320 रुपये है।
B का हिस्सा: B ने 6 दिनों के लिए 1/20 काम प्रतिदिन की दर पर काम किया है, इसलिए उसने (6 * 1/20) = 3/10 काम किया है। B का हिस्सा कुल मिलकर (3/10) * 800 रुपये = 240 रुपये है।
C का हिस्सा: C ने 6 दिनों के लिए 1/20 काम प्रतिदिन की दर पर काम किया है, इसलिए उसने (6 * 1/20) = 3/10 काम किया है। C का हिस्सा कुल मिलकर (3/10) * 800 रुपये = 240 रुपये है।
अब, जांचने के लिए कुल राशि को यहाँ प्राप्त किया जा सकता है:
Rs 320 (A) + Rs 240 (B) + Rs 240 (C) = Rs 800
इसलिए, वे पैसे निम्नलिखित रूप में बाँट सकते हैं:
- A को 320 रुपये मिलें।
- B को 240 रुपये मिलें।
- C को 240 रुपये मिलें।