Books and Authors рдкреНрд░рд╢реНрди рдФрд░ рдЙрддреНрддрд░ рдХрд╛ рдЕрднреНрдпрд╛рд╕ рдХрд░реЗрдВ
рдкреНрд░: Find the Next Number in the given number series? 3, 10.5, 36.75, 128.625, ? 1575 05b5cc6bae4d2b4197774d7a8
5b5cc6bae4d2b4197774d7a8- 1450.187true
- 2442.151false
- 3441.231false
- 4456.852false
- рдЙрддреНрддрд░ рджреЗрдЦреЗрдВ
- Workspace
- SingleChoice
рдЙрддреНрддрд░ : 1. "450.187"
рд╡реНрдпрд╛рдЦреНрдпрд╛ :
Answer: A) 450.187 Explanation: Pattern is 3 3 x 3.5 = 10.5 10.5 x 3.5 = 36.75 36.75 x 3.5 = 128.625 128.625 x 3.5 = 450.187
рдкреНрд░: Find the next number in the given number series? 0, 3, 8, 15, 24, ? 1562 05b5cc6a7e4d2b4197774ce13
5b5cc6a7e4d2b4197774ce13- 135true
- 237false
- 334false
- 436false
- рдЙрддреНрддрд░ рджреЗрдЦреЗрдВ
- Workspace
- SingleChoice
рдЙрддреНрддрд░ : 1. "35"
рд╡реНрдпрд╛рдЦреНрдпрд╛ :
Answer: A) 35 Explanation: Here the given number series is 0, 3, 8, 15, 24, ? The next number in the given series can be found such a way that the number series follows a pattern, 22 - 4 = 032 - 6 = 342 - 8 = 852 - 10 = 1562 - 12 = 2472 - 14 = 35Hence, the next number in the iven series is 35.
рдкреНрд░: Who is the author of the Book 'Social Exclusion and Justice in India'? 1561 05b5cc6bee4d2b4197774d979
5b5cc6bee4d2b4197774d979- 1Rakesh Kumarfalse
- 2Arun Singhfalse
- 3M. Venkaiah Naidufalse
- 4P.S. Krishnantrue
- рдЙрддреНрддрд░ рджреЗрдЦреЗрдВ
- Workspace
- SingleChoice
рдЙрддреНрддрд░ : 4. "P.S. Krishnan"
рд╡реНрдпрд╛рдЦреНрдпрд╛ :
Answer: D) P.S. Krishnan Explanation:
рдкреНрд░: Find the odd one in the number series given below ? 17, 9, 10, 18.5, 35, 90 1543 05b5cc6c5e4d2b4197774dd91
5b5cc6c5e4d2b4197774dd91- 19false
- 210false
- 318.5true
- 490false
- рдЙрддреНрддрд░ рджреЗрдЦреЗрдВ
- Workspace
- SingleChoice
рдЙрддреНрддрд░ : 3. "18.5"
рд╡реНрдпрд╛рдЦреНрдпрд╛ :
Answer: C) 18.5 Explanation: The given series pattern follows 17 9 10 18.5 35 90 ├Ч 0.5 + 0.5, ├Ч 1 + 1, ├Ч 1.5 + 1.5, ├Ч 2 + 2, ├Ч 2.5 + 2.5 So here 17x0.5 + 0.5 = 9 9x1 + 1 = 10 10x1.5 + 1.5 = 16.5 16.5x2 + 2 = 35 35x2.5 + 2.5 = 90 Here the odd man in the given series is 18.5
рдкреНрд░: In the following number series only one number is wrong. Find out the wrong number ? 6, 15, 35, 63, 143, 221, 323 1532 05b5cc6c8e4d2b4197774df41
5b5cc6c8e4d2b4197774df41- 1143false
- 263true
- 3323false
- 435false
- рдЙрддреНрддрд░ рджреЗрдЦреЗрдВ
- Workspace
- SingleChoice
рдЙрддреНрддрд░ : 2. "63"
рд╡реНрдпрд╛рдЦреНрдпрд╛ :
Answer: B) 63 Explanation: Here the series follows the pattern that, product of succesive prime numbers i.e, 2 ├Ч 3 = 6 3 ├Ч 5 = 15 5 ├Ч 7 = 35 7 ├Ч 11 = 77 11 ├Ч 13 = 143 13 ├Ч 17 = 221 17 ├Ч 19 = 323 So here in place of 77 the number 63 is written. So the wrong number is 63.
рдкреНрд░: Find out the wrong term in the following number series. 4, 16, 37, 58, 81. 1519 05b5cc6cae4d2b4197774e09a
5b5cc6cae4d2b4197774e09a- 116false
- 237false
- 381true
- 44false
- рдЙрддреНрддрд░ рджреЗрдЦреЗрдВ
- Workspace
- SingleChoice
рдЙрддреНрддрд░ : 3. "81"
рд╡реНрдпрд╛рдЦреНрдпрд╛ :
Answer: C) 81 Explanation: The series follows the following pattern. 4 16 = 42 37 = 12+62 58 = 32+72 81 тЙа52+82. Here every number is based on the digits of previous number. Hence, 81 is the wrong number in the given series.
рдкреНрд░: Find the next number in the given number series? 11, 5.5, 10, 6.5, 9, ? 1518 05b5cc61ee4d2b4197774b753
5b5cc61ee4d2b4197774b753- 16.5false
- 27.5true
- 38.5false
- 410.5false
- рдЙрддреНрддрд░ рджреЗрдЦреЗрдВ
- Workspace
- SingleChoice
рдЙрддреНрддрд░ : 2. "7.5"
рд╡реНрдпрд╛рдЦреНрдпрд╛ :
Answer: B) 7.5 Explanation: The given number series follows a pattern that 11 11 - 5.5 = 5.5 5.5 + 4.5 = 10 10 - 3.5 = 6.5 6.5 + 2.5 = 9 9 - 1.5 = 7.5 Hence, the next number in the given number series is 7.5.
рдкреНрд░: Find the sum of the Arithmetic Series upto 36 terms 2, 5, 8, 11,... 1503 15b5cc6afe4d2b4197774d259
5b5cc6afe4d2b4197774d259- 13924false
- 21962true
- 31684false
- 41452false
- рдЙрддреНрддрд░ рджреЗрдЦреЗрдВ
- Workspace
- SingleChoice
рдЙрддреНрддрд░ : 2. "1962"
рд╡реНрдпрд╛рдЦреНрдпрд╛ :
Answer: B) 1962 Explanation: Arithmetic Series :: An Arithmetic Series is a series of numbers in which each term increases by a constant amount. How to find the sum of the Arithmetic Sequence or Series for the given Series :: When the series contains a large amount of numbers, its impractical to add manually. You can quickly find the sum of any arithmetic sequence by multiplying the average of the first and last term by the number of terms in the sequence. That is given by Sn = n(a1 + an)2 Where n = number of terms, a1 = first term, an = last term Here Last term is given by an = a1 + n-1d where d = common difference Now given Arithmetic Series is 2, 5, 8, 11,... Here a1 = 2, d = 3, n = 36 Now, an= a1 + n - 1d a36= 2 + 36 - 13 = 105 + 2 = 107 Now, Sum to 36 terms is given by S36 = 36(2 + 107)2 = 36 x 1092 = 39242 = 1962 Therefore, Sum to 36 terms of the series 2, 5, 8, 11,... is 1962.