Aptitude Questions Practice Question and Answer

Q: For┬аxтИИN,┬аx>1,┬а┬аand┬а p=logxx+1,┬аq=logx+1x+2 then which one of the following is correct? 6918 2

  • 1
    p < q
    Correct
    Wrong
  • 2
    p = q
    Correct
    Wrong
  • 3
    p > q
    Correct
    Wrong
  • 4
    can't be determined
    Correct
    Wrong
  • Show AnswerHide Answer
  • Workspace

Answer : 3. "p > q"
Explanation :

Answer: C) p > q Explanation: kl>k+1l+1┬аfor (k,l) > 0 and ┬аk > l┬а ┬а ┬а ┬а Let ┬а ┬а k = x+1 ┬а ┬аand ┬а l = x ┬а ┬а ┬а Therefore,┬аx+1x>(x+1)+1(x)+1 ┬а ┬а ┬а ┬а(x + 1) > x ┬а ┬а ┬а Therefore,┬аlog(x+1)log(x)>log(x+2)log(x+1) ┬а ┬а ┬а тЗТlogxx+1┬а>logx+1x+2

Q: What is the number of digits in┬а333? Given that log3 = 0.47712? 5528 0

  • 1
    12
    Correct
    Wrong
  • 2
    13
    Correct
    Wrong
  • 3
    14
    Correct
    Wrong
  • 4
    15
    Correct
    Wrong
  • Show AnswerHide Answer
  • Workspace

Answer : 2. "13"
Explanation :

Answer: B) 13 Explanation: ┬аLet ┬а┬аLet┬аx=333┬а=┬а333 ┬а ┬аThen,┬аlogx┬а=┬а33┬аlog3┬а┬а ┬а = 27 x 0.47712 = 12.88224┬а ┬а Since the characteristic in the resultant value of log x is 12 ┬а тИ┤The number of digits in x is (12 + 1) = 13┬а ┬а Hence the required number of digits in┬а333is 13.

  • Show AnswerHide Answer
  • Workspace

Answer : 4. "рдЗрдирдореЗрдВ рд╕реЗ рдХреЛрдИ рдирд╣реАрдВ"
Explanation :

undefined

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully