Get Started

प्रतियोगी परीक्षाओं के लिए पासा संभावना सूत्र

4 years ago 12.6K द्रश्य
dice probability formulasdice probability formulas

छात्रों को प्रतियोगी परीक्षाओं में बहुत कठिनाइयों का सामना करना पड़ता है, जिनमें रीजनिंग प्रश्नों को हल करने के लिए अच्छी रीजनिंग एबिलिटी जरुरी होती है। तो, यहाँ मैं आपको पासा संभावना सूत्र साझा कर रहा हूँ जिससे आप अपनी मानसिक क्षमता को आसानी से सुधार सकते हैं।

इस ब्लॉग में, आप समझ सकते हैं कि पासा की समस्याओं को हल करने के लिए पासे के प्रश्नों में सूत्रों का उपयोग कैसे किया जाए। इसलिए, इन प्रश्नों के साथ अपने फॉर्मूले को सूत्र के रूप में अच्छी तरह समझने के लिए शुरू करें। प्रतियोगी परीक्षा में बेहतर रैंक के लिए आप संभावना में पासा प्रॉब्लम के साथ प्रैक्टिस में अधिक अभ्यास कर सकते हैं।


पासा संभाव्यता प्रश्न के सूत्र


सिंगल पासा -

जब एक सिंगल को फेंक दिया जाता है, तो छह संभावित परिणाम होते हैं: 1, 2, 3, 4, 5, 6।

उनमें से किसी एक की संभावना 1/6 है

संभावना

किसी घटना के घटित होने की संभावना = इसके कई तरीके हो सकते हैं / परिणामों की कुल संख्या

उदाहरण .1:  मरने के साथ "4" रोल करने की संभावना।

उपाय:

यह हो सकता है तरीकों की संख्या: 1 (उस पर "4" के साथ केवल 1 चेहरा है)

परिणामों की कुल संख्या: 6 (कुल मिलाकर 6 चेहरे हैं)

तो संभावना = 1/6

दो पासे रोलिंग के लिए संभावना

प्रत्येक पक्ष में 6 पक्षीय डॉट्स जैसे 1, 2, 3, 4, 5 और 6 डॉट्स के साथ दो पासा को रोल करने की संभावना।

जब दो पासा एक साथ फेंके जाते हैं, तो इस तरह की घटना की संख्या 62 = 36 हो सकती है, क्योंकि प्रत्येक मरने वाले के चेहरे पर 1 से 6 संख्या होती है। फिर संभावित परिणाम नीचे दी गई तालिका में दिखाए गए हैं।

संभाव्यता - दो पासा (परिणाम) के लिए सेंपल स्पेस:



1

2

3

4

5

6

1

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

2

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

3

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

(3,6)

4

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

5

(5,1)

(5,2)

(5,3)

(5,4)

(5,5)

(5,6)

6

(6,1)

(6,2)

(6,3)

(6,4)

(6,5)

(6,6)


नोट:

(i) परिणाम (1, 1), (2, 2), (3, 3), (4, 4), (5, 5) और (6, 6) को युगल कहा जाता है।

(ii) जोड़ी (1, 2) और (2, 1) अलग-अलग परिणाम हैं।

समाधान के साथ संभाव्यता हल में पासा समस्याएँ:

उदाहरण 1. दो पासे लुढ़के हैं। A वह घटना है जो दो पासा पर दिखाए गए अंकों का योग 5 है, और बी वह घटना है जो कम से कम पासा में से एक 3 दिखाती है।

क्या दो घटनाएं (i) परस्पर अनन्य हैं, (ii) संपूर्ण? अपने उत्तर के समर्थन में तर्क दें।

उपाय:

जब दो पासे लुढ़के होते हैं, तो हमारे पास n (S) = (6 × 6) = 36 होता है।

अब, B = {(1, 4), (2, 3), (4, 1), (3, 2)}, और

B = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (1,3), (2, 3), (4, 3), (5, 3), (6, 3)} 

(i) A ∩ B = {(2, 3), (3, 2)} ≠ ∅.

इसलिए, A और B परस्पर अनन्य नहीं हैं।

(ii) इसके अलावा,  A ∪ B ≠ S.

इसलिए, A और B संपूर्ण ईवेंट नहीं हैं।

उदाहरण  2. दो पासे लुढ़के हैं। A, B, C को क्रमशः 2 का योग, 3 का योग और 4 का योग होने दें। फिर, वह दिखाएं

(i) A एक साधारण घटना है

(ii) B और C यौगिक घटनाएँ हैं

(iii) A और B परस्पर अनन्य हैं

उपाय:

जाहिर है, हमारे पास है 

A = {(1, 1)}, B = {(1, 2), (2, 1)} और C = {(1, 3), (3, 1), (2, 2)}. 

(i) चूँकि A में सिंगल सेंपल पोंइट होता है, यह एक साधारण घटना है।

(ii) चूंकि B और C दोनों में एक से अधिक सेंपल पोंइट होते हैं, इसलिए उनमें से प्रत्येक एक यौगिक घटना है।

(iii) चूंकि A = B = ∅, A और B परस्पर अनन्य हैं।

आप मुझसे बिना किसी झिझक के कमेंट बॉक्स में कुछ भी संबंधित पासा संभावना सूत्र पूछ सकते हैं। अधिक अभ्यास के लिए अगले पेज पर जाएँ।

Related categories

संबंधित पोस्ट

सबसे विस्तृत एग्जाम तैयारी प्लेटफार्म

Examsbook Prep ऐप आज ही प्राप्त करें