Simplification Practice Question and Answer

Q:

सरल करें $$ {(7) ^{2} ÷(7^{1\over 2})^{4}}$$

1051 0

  • 1
    $$ {1\over 14}$$
    Correct
    Wrong
  • 2
    1
    Correct
    Wrong
  • 3
    14
    Correct
    Wrong
  • 4
    7
    Correct
    Wrong
  • Show Answer
  • Workspace

Answer : 2. "1"

Q:

यदि (a + b):(b + c):(c + a) = 7:6:5 और a + b + c = 27, तो 1/a: 1/b :1/c का मान क्या होगा?

1203 0

  • 1
    3:6:4
    Correct
    Wrong
  • 2
    3:2:4
    Correct
    Wrong
  • 3
    4:3:6
    Correct
    Wrong
  • 4
    3:4:2
    Correct
    Wrong
  • Show Answer
  • Workspace

Answer : 3. "4:3:6 "

Q:

सरल कीजिए $$ {(2x)^{2}-(2y)^{2}-(4x)^{2}}$$

909 0

  • 1
    $$ {(12x^{2}-4y^{2})}$$
    Correct
    Wrong
  • 2
    $$ {(12x^{2}+4y^{2})}$$
    Correct
    Wrong
  • 3
    $$ {-12x^{2}+4y^{2}}$$
    Correct
    Wrong
  • 4
    $$ {-12x^{2}-4y^{2}}$$
    Correct
    Wrong
  • Show Answer
  • Workspace

Answer : 4. "$$ {-12x^{2}-4y^{2}}$$"

Q:

$$ {0.55 × 4.5\over 0.81}$$ का मान क्या है?

828 0

  • 1
    $$ {55\over 18}$$
    Correct
    Wrong
  • 2
    3.05
    Correct
    Wrong
  • 3
    $$ {55\over 81}$$
    Correct
    Wrong
  • 4
    3.555
    Correct
    Wrong
  • Show Answer
  • Workspace

Answer : 1. "$$ {55\over 18}$$"

Q:

यदि $$ {\sqrt{1+{473\over{256}}}=1+{x\over 16}}$$  है तो x बराबर है—

1129 0

  • 1
    11
    Correct
    Wrong
  • 2
    12
    Correct
    Wrong
  • 3
    13
    Correct
    Wrong
  • 4
    14
    Correct
    Wrong
  • Show Answer
  • Workspace

Answer : 1. "11"

Q:

निम्नलिखित समीकरण को सरल कीजिए।
$$ {\sqrt{(1-sin^{2}θ) ÷{(1-cos^{2}θ)}}}$$

941 0

  • 1
    tan θ
    Correct
    Wrong
  • 2
    cot θ
    Correct
    Wrong
  • 3
    sec θ
    Correct
    Wrong
  • 4
    cosec θ
    Correct
    Wrong
  • Show Answer
  • Workspace

Answer : 2. "cot θ"

Q:

1166 0

  • 1
    8
    Correct
    Wrong
  • 2
    –2
    Correct
    Wrong
  • 3
    –6
    Correct
    Wrong
  • 4
    12
    Correct
    Wrong
  • Show Answer
  • Workspace

Answer : 3. "–6"

Q:

 का निकटतम मान है।

894 0

  • 1
    2.1
    Correct
    Wrong
  • 2
    2.7
    Correct
    Wrong
  • 3
    2.4
    Correct
    Wrong
  • 4
    1.8
    Correct
    Wrong
  • Show Answer
  • Workspace

Answer : 3. "2.4"

  Report Error

Please Enter Message
Error Reported Successfully

  Report Error

Please Enter Message
Error Reported Successfully

  Report Error

Please Enter Message
Error Reported Successfully

  Report Error

Please Enter Message
Error Reported Successfully

  Report Error

Please Enter Message
Error Reported Successfully

  Report Error

Please Enter Message
Error Reported Successfully

  Report Error

Please Enter Message
Error Reported Successfully

  Report Error

Please Enter Message
Error Reported Successfully