Aptitude Practice Question and Answer

  • Show AnswerHide Answer
  • Workspace

Answer : 4. "768 π"

  • Show AnswerHide Answer
  • Workspace

Answer : 1. "9 : 25"

Q:

(tan2A+ cot2A-2)- sec2A cosec2 A का मान है:

407 0

  • 1
    -4
    Correct
    Wrong
  • 2
    -1
    Correct
    Wrong
  • 3
    1
    Correct
    Wrong
  • 4
    4
    Correct
    Wrong
  • Show AnswerHide Answer
  • Workspace

Answer : 1. "-4"

  • Show AnswerHide Answer
  • Workspace

Answer : 3. "550"

Q:

यदि cos(2θ+54°) = synθ, 0°<(2θ-54°)<90°, तो $$1\over tan5θ+cosec{5θ\over 2}$$ का मूल्य क्या है

448 0

  • 1
    $$3\sqrt { 2}$$
    Correct
    Wrong
  • 2
    $$2-\sqrt { 3}$$
    Correct
    Wrong
  • 3
    $$2\sqrt { 3}$$
    Correct
    Wrong
  • 4
    $$2+\sqrt { 3}$$
    Correct
    Wrong
  • Show AnswerHide Answer
  • Workspace

Answer : 2. "$$2-\sqrt { 3}$$ "

Q:

यदि (x + y)3 +8 (x - y)3 = (3x+ Ay)(3x2+ Bxy+ Cy2), तो A+B+C का मान है:

396 0

  • 1
    0
    Correct
    Wrong
  • 2
    4
    Correct
    Wrong
  • 3
    2
    Correct
    Wrong
  • 4
    3
    Correct
    Wrong
  • Show AnswerHide Answer
  • Workspace

Answer : 1. "0"

Q:

$$sinθ[(1-tanθ)tanθ+sec^2θ]\over (1-sinθ)tanθ(1+tanθ)(secθ+tanθ)$$ इसके बराबर है:

363 0

  • 1
    cosecθsecθ
    Correct
    Wrong
  • 2
    -1
    Correct
    Wrong
  • 3
    1
    Correct
    Wrong
  • 4
    sinθcosθ
    Correct
    Wrong
  • Show AnswerHide Answer
  • Workspace

Answer : 3. "1"

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully