जॉइन Examsbook
1385 0

प्र: In how many different ways can the letters of the word 'THERAPY' be arranged so that the vowels never come together?

  • 1
    1440
  • 2
    720
  • 3
    2250
  • 4
    3600
  • उत्तर देखें
  • Workspace

उत्तर : 4. "3600"
व्याख्या :

Answer: D) 3600 Explanation: Given word is THERAPY. Number of letters in the given word = 7 These 7 letters can be arranged in 7! ways. Number of vowels in the given word = 2 (E, A) The number of ways of arrangement in which vowels come together is 6! x 2! ways   Hence, the required number of ways can the letters of the word 'THERAPY' be arranged so that the vowels never come together = 7! - (6! x 2!) ways = 5040 - 1440 = 3600 ways.

क्या आपको यकीन है

  त्रुटि की रिपोर्ट करें

कृपया संदेश दर्ज करें
त्रुटि रिपोर्ट सफलतापूर्वक जमा हुई